
mathNEWS February 18, 2022

VOLUME 148 • ISSUE 3

7707059 041004

Bucket lists are for losers. Pail lists are where it’s at.
T ERRY C H E N , mathN E WS E D I TO R F O R W I N T ER 2 0 2 2

A LO N G W I T H C H E N C H A I , N A M A N S O O D, C L ARA X I , A N D YA N G Z H O N G

“WHAT’S ONE THING ON YOUR BUCKET LIST?”
I had a marvellous mastHEAD planned out for this issue that
this column is too small to contain. So instead, enjoy this
picture of my sole surviving brain cell.

terrifiED
Editor, mathNEWS

ARTICLE OF THE ISSUE
Despite the return of poorly-timed in-person midterms
coinciding with prod nights (lookin’ at you, MATH 136), we
have no shortage of amazing articles:

•	 CC reports on the hypothetical Gaming Club’s
continued experiments with a hypothetical crypto-
currency (spoiler: hypohyperinflation ensues)

•	 jeff discovers i3 in i3 while being arrested by the
C++ Police for exploring tuples

•	ƕ breaks down the meaning of computability in a
strangely existential manner

•	 cutlet gives the editors a headache with the
character ꙮ

•	 A cabal of mathNEWS writers attempt to uncover
the identity of the writer known as Finchey

•	 Lots and lots of poetry in various forms

With so many candidates to choose from, you can imagine
we’re having a hard time choosing an AOTI. However, after
much deliberation, we have decided to award a $25 Conestoga
Mall gift card to ((λ(* /)(* * /))(λ(+ -)(if - -(+ + #t)))#f) for
their six-part series An Election System Proposal. Congratulations!

terrifiED
Editor, mathNEWS

χ Losing it all in the most expensive sample
clearance lawsuit of all time

SecretSquirrel Going to an Antarctic research station.

boldblazer I realize that my list is not empty but I have no
idea what is contained in it…

Deriving for Dick Death.

girafarig Finishing this article I’ve been working on since
last like November

cy Eating cup noodles outside while it’s snowing

jeff Dethrone Stroustrup.

CC be a cute anime guy ✨

eternally puzzled Why are you so interested in knowing my
deepest desires?

ƕ Amend AUDB into the PMC constitution

PhilosophicalSoul Always add more things to my bucket list

evilevievil Save up for the future.

tendstofortytwo Learn Japanese because anime

Skit Getting tied up in a straitjacket and imprisoned
in an abandoned mental hospital

waldo@<3.LE-GASP.ca Free hugs and dog snuggles

cutlet Go to sleep on time

Beyond Meta Become a writer for the Beaverton

psychAlum Raise a dog and cat at the same time 🐶🐱

Not a N*rd Get a degree

sqrt(cause) Own a bucket.

sma Go to Friesland (the land of the smas)

methNEWS
Finally come up with a pen name that doesn’t
make me sound like a drug addict. Then
celebrate by doing copious amounts of cocaine

me Wake up five minutes before alarm

Finchey Wrestle a hammerhead shark in the Gulf of
Mexico… wearing a Speedo.

Abald Man Go bald

someBODY Turn my body parts into robot parts

terrifiED Turn up on someone else’s bucket list

bipED Scan

enamourED be a cute anime girl ✨

caffeinatED Drink a bucket full of coffee.

clarifiED I don’t believe in bucket lists… but my answer’s
skydiving.

god⚡peED Do comedy for a living (my pull requests don’t
count)

mastHEAD

mathASKS 148.3
FEATURING PROFESSOR LUCY GAO

quantum goose: What is biostatistics all about?

Whenever I have to talk to border agents I tell them it's
statistics but I talk to more doctors. That's actually not too far
off, though! Broadly speaking, biostatisticians are statisticians
who are motivated and interested in biology, medicine, and
public health. Since the types of statistical methods deployed
for these applications have become much more diverse, as a
biostatistician you can work on just about any statistics subarea
that interests you!

loloolol: Why are you fascinated by biostatistics?

In part because of advances in biotechnology, modern
biological data sets are getting increasingly large and
complicated. As a result, scientists are asking the same old
questions of their data but in messier settings, or they're
asking more questions of their data, or they even ask brand
new questions. This creates a lot of very interesting statistical
challenges that are fun to tackle. Plus, I get to be involved in
cool science without having to do wet lab work!

clarifiED: Could you tell me more about the “double-
dipping” problem you study? How did it come to be?
And what alternatives exist?

I spent my PhD thinking about clustering algorithms, which
take in data corresponding to a set of objects (e.g., patients,
customers, proteins) and put those objects into groups
(clusters) so that the data from the objects within each cluster
look similar to each other. Clustering is used in lots of applica-
tions. Examples include defining different customer subgroups
to tailor marketing to, and defining subtypes of cancer.

Before you do anything with the clusters your algorithm has
given you, you might want to confirm that the differences
between the clusters are statistically significant. If you've taken
an intro stat class then you learned about statistical tests (e.g.,
the t-test) you can deploy to determine if two groups have a
statistically significant difference. Doing this is sometimes
called “double-dipping,” because you're using the data
twice — once to cluster and once to test.

Unfortunately, it turns out that if you actually use the t-test
on your clusters, then you'll almost always reject the null
hypothesis of no difference between them, even if it's true!
This is basically because you've cheated by cherry-picking your
null hypothesis. You will only group objects into a cluster if
their data look sufficiently different. So your data is pretty
much guaranteed to look “unusual” under the null hypothesis,
so far as the t-test knows.

This actually turned out to be a hard problem to solve. Simple,
straightforward solutions that often work didn't. The key
to the solution I proposed in my paper was to define a new
p-value that acknowledges that data in different clusters will
inevitably look somewhat different, when defining what's

“unusual” under the null hypothesis. This spawned a whole
line of follow-up work where I'm trying to tackle other similar
types of “double-dipping” problems.

Anyways, point being, any of you kids out on co-ops who are
doing clustering in the wild, please please please do not test
for differences between the clusters! Unless you use my R
package. (If you do though, make sure to tell me about it so I
can put it in my tenure packet!)

sqrt(cause): You started your PhD with an
investigation into liver transplants. Can I ask, how
did it impact your opinions on “foie gras”?

I —  wow. Incredible question. This had literally never crossed
my mind until this moment. I mean, if there's anything I
learned in my time working with the gastroenterologists at
Seattle Children's Hospital, it's that livers are precious and we
should make the most of them. You could argue that force-
feeding geese to make their livers more delicious doesn't
qualify.

boldblazer: You went from one UW to another UW.
Was that purely a coincidence?

Absolutely not, I made it happen by conducting a job search
across UWs and UWs only. (University of Waterloo, University
of Washington, University of Wisconsin-Madison, University
of Wyoming…)

Kidding, of course. It's just a coincidence, albeit a confusing
one for me. Every time I hear “UW” my brain goes into
overtime trying to figure out by context whether it's Waterloo
or Washington. My only regret is that our email domain is
uwaterloo.ca — can you imagine if I had gone from uw.edu
to uw.ca?

me: What is the probability that you and Alice Gao (CS
instructor) form a UW underground rap/singer duo
called the Gao Gao?

You know, there's also Jane Gao in Combinatorics and
Optimization — so I'm holding out for Gao Gao Gao. Our first
single could be self-titled and be set to the tune of “Bye Bye
Bye” by NSYNC.

This isn't magic, this is
math! Subtle but crucial
difference.

P RO F. DAV I D M C K I N N O N

mathNEWS 148.3February 18, 2022 1

ON HEARTBREAK / A VALENTINE'S DAY POEM / A
RESPONSE TO "ON LOVE"
Absolutely smitten has more than adequately written
A beautiful piece about being in love
When I read it I cried, and my heart deep inside
Suddenly filled with pictures of flowers and doves

But as my poems have shown, I am quite alone
And as a consequence, am unbearably bored
So my brain has spawned a poem to respond
And show single students will not be ignored

I hope that my voice can help some people rejoice
And give heart-broken readers the much needed hope
But in all honesty, this whole thing’s just for me
Because we all know writing songs’s how I cope

Who doesn’t want to be the boy with the golden hair?
Who doesn’t want to feel the love going through the air?
But sometimes unfortunately we’re left with just pain to share
Leads you straight to wondering if life’s always this unfair

The thrusting hand from the abyss
Will push to seethe in madness
And trust me I have been through this
Consumed myself with sadness

Ignoring all the good old things
Which used to bring you gladness
Enjoyment could turn to a fling
Pursued by ruder crassness

Then your life is in fractions, shit is just obnoxious
While they form their factions you’re left to wonder options
But the one that has compassion just doesn’t fit the fashion
So you take it and stash-in, ignoring all the cautions

I am of the view the universe’s pretty cold
And having someone with you can finally break this mold
Or maybe lighten the load? And really brighten this world?
Could be true but take note: this is how the fantasy’s sold

So time is over, clock’s run out, let’s snap back to reality
We’re at the point in life we shape the status we call sanity
And I could spend it all imagining things that’ll never be
Diverting all this energy to people that, well, aren’t me

But you and I know this ain’t the right way to live
So if you want to move on, you have to try to forgive
And you should really move on, unless you want to re-live
Be disturbed every day at how much thoughts can outlive

On the other side we got a path of independence
Once you leave the wrath behind you won’t need repentance

You can do the math on how this will ease off your sentence
Take the socio out your path cause you’re its sole attendance

And turn your efforts into shaping who you’ll turn to be
Cause you’re stuck with this one person for your life’s eternity
Don’t you want your inner person to be who outsiders see
When in their mind they see you as kind, someone happy

So this is your best chance to focus on yourself instead
Use heartbreak as your freedom, this is how you look ahead
Going solo is a power, it might not quite raise the dead
But it can raise you up until you don’t need tears to shed

This song isn’t meant as an attack against your character
It’s advice in a canister, a metaphoric banister
Cause I’m no romance minister, I’m just here to administer
Some help for broken hearts as a Valentine’s Day finisher

Even if my poem’s a blight
And you’re still not over it
All writers with dates on prod night
Have nothing to show for it

Now you see having a partner can cause quite the damage
So maybe knowing that you don’t will prove to be a bandage
And if you’re single and wonder how you will ever manage
Just don’t forget that once a year you got writing advantage

Bezdomny

N FREE-TO-USE
mathNEWS EDITOR
NAMES THAT AREN’T PAST
TENSE VERBS

•	 bunkbED
•	 birdfeED
•	 bloodrED
•	 nosebleED
•	 toolshED
•	 grapeseED
•	 coupdepiED
•	 smokeweED
•	 streetcrED
•	 evildeED
•	 djkhalED
•	 qED

writiNG

mathNEWS 148.3 February 18, 20222

THE REAL sexNEWS 3: BROUGHT TO YOU IN HAIKU
FORM, FOR SOME WEIRD REASON
This is a sure proof
Poetry will get you laid
Read and learn, virgins

 ❦

Q:
Dear meth NEWS help me
I want to find a partner
How do I do that?

A:
If you want a mate
You must look where no one has
Deep inside your heart

Nah I’m just kidding
Fuck that shit, go join some clubs
Be more outgoing

Q:
I want to impress
My girlfriend with some sweet poems
But I cannot write

A:
Damn, she’s into poems?
You should give me her number
I’ll wingman for you

Q:
I wanted to go
To the sex shop down the street
But I am ashamed

A:
Never be ashamed
It’s your right as an adult
No one will judge you

So go spend some cash
To help the economy
(I bought sex shop stocks)

Q:
I tried to have sex
But I did not know how to
Put on a condom

A:
Anything with sex
Is really like calculus
Practice lots at home

Q:
I am terrified
To ask out my years-long crush
Help me stop the fear

A:
You must gain some strength
And I mean that literally
Go to the gym, pal

Soon enough you will
Lift so much weight you will feel
You can conquer all

And you’ll be a beast
Wait what was the prompt about?
Doesn’t matter, lift!

Q:
I'm on the job grind
But my partner wants me to
spend more time with them

A:
There are many fish
In the sea but only one
Cali in the world

 ❦

This has been a blast
I should do this frequently
^ Things I say post-sex

meth NEWS

THAT SEXUAL TENSION
Between you and the stranger when the elevator already
reached your floor but the doors haven't opened yet.

Saint Valentine

Math undergrads
already know too much
about me.

P RO F. J I M G EE L E N

mathNEWS 148.3February 18, 2022 3

AN ELECTION SYSTEM PROPOSAL: PART 6
Author's note: the first part of this article was published in 147.4.

As promised in the last part of this article, I will present an
acceptable victory index algorithm.

Definition 9: the lowest losses victory index algorithm L is a
victory index algorithm defined as follows. Let E = (S, f) be
an election and let s ∈ S . Then,

(L(E))(s) = −
∑

q∈S,f(q,s)> 1
2

f(q, s)

Theorem 1: L is an acceptable victory index algorithm.

Proof: to verify condition 1, let E = (S, f) be an election and
let a ∈ S be a clear winner. Therefore, for all b ∈ S , either
a = b, in which case f(b, a) = 1

2 , or a beats b, which means
that f(b, a) < 1

2 . Therefore, by definition, (L(E))(a) = 0. Now,
let b ∈ S such that b �= a. Since a is a clear winner,
f(a, b) > 1

2 . Therefore, by definition, (L(E))(b) < −1
2 .

Therefore, a is the winner of E according to L.

To verify condition 2, let E = (S, f) be an election, let T be
a losing set of E , and let a ∈ T . Let W = S \ T . Since T is a
losing set, W is non-empty and every candidate in W beats a.
Therefore, by definition, (L(E))(a) < −|W |

2 . Let w ∈ W be such
that (L(E))(w) ≥ (L(E))(x)∀x ∈ W . It follows quickly from
the definitions of L and of an election that

∑
x∈W

(L(E))(x) ≥ −|W |(|W |−1)
2

Therefore, the mean VI of candidates in W is at least 1−|W |
2 .

Since w is such that (L(E))(w) ≥ (L(E))(x)∀x ∈ W , it must be
the case that (L(E))(w) ≥ 1−|W |

2 . But this is greater than −|W |
2 ,

which in turn is greater than (L(E))(a). Therefore, a is not the
winner of E according to L.

To verify condition 3, let E = (S, f) be an election. Let T
be a losing set of E . Let Q = S \ T . Let g be the restriction
of f on Q × Q. Let W = (Q, g). Let a ∈ Q. Now, since
T is a losing set, a beats every candidate in T , which
means that f(b, a) < 1

2 ∀b ∈ T . Therefore, by definition,
(F (E))(a) = (F (W))(a).

Theorem 2: L is a good victory index algorithm.

Proof: by theorem 1, L is acceptable, so it remains only to
verify the two conditions in definition 8. To verify condition
1, let E = (S, f) be an election such that a ∈ S is the winner
of E according to L. Let g : S × S → [0, 1] be a function
with properties that make Q = (S, g) an election. Assume
g(b, c) = f(b, c)∀b, c ∈ S, a �= b, a �= c and g(a, b) ≥ f(a, b)∀b ∈ S .
I need to show that a is the winner of Q according to L.
Let x = (L(E))(a). Since g(a, b) ≥ f(a, b)∀b ∈ S , it follows
immediately from the definition of L that (L(Q))(a) ≥ x. Now
let b ∈ S where b �= a. By definition,

(L(Q))(b) = −
∑

q∈S,g(q,b)> 1
2

g(q, b)

There are two cases to consider: either a beats b or it does not.
If a beats b, then

(L(Q))(b) = −g(a, b) −
∑

q∈S,q �=a,g(q,b)> 1
2

g(q, b)

Since g(a, b) ≥ f(a, b) and g(q, b) = f(q, b)∀q ∈ S, q �= a, this is
at most equal to (L(E))(b). However, this must be strictly less
than x, since a is the winner of E according to L. Therefore,
in this case, a has a VI strictly greater than the VI of b.

In the other case, a does not beat b. Therefore, f(a, b) ≤ 1
2 .

Therefore, by definition,

(L(Q))(b) = −
∑

q∈S,q �=a,g(q,b)> 1
2

g(q, b)

Since g(q, b) = f(q, b)∀q ∈ S, q �= a, this equals (L(E))(b).
However, this must be strictly less than x, since a is the
winner of E according to L. Therefore, in this case, a has a VI
strictly greater than the VI of b. Therefore, a is the winner of
Q according to L.

To verify condition 2, let E = (S, f) be an election such that
a ∈ S is not the winner of E according to L. Let g : S × S → [0, 1]
be a function with properties that make Q = (S, g) an
election. Assume g(b, c) = f(b, c)∀b, c ∈ S, a �= b, a �= c
and g(a, b) ≤ f(a, b)∀b ∈ S . I need to show that a is not
the winner of Q according to L. Let x = (L(E))(a). Since
g(a, b) ≤ f(a, b)∀b ∈ S , it follows immediately from the
definition of L that (L(Q))(a) ≤ x. Since a is not the winner
of E according to L, there exists some w ∈ S such that
(L(E))(w) ≥ x. There are two cases to consider: either a
beats b or it does not. Using almost identical arguments as for
condition 1, it can be shown that, in both cases, a has a VI less
than or equal to the VI of b. Therefore, a is not the winner of
Q according to L.

So there you have it. The election system can now be reduced
to calculating VI for every candidate according to the lowest
losses victory index algorithm, and whoever has the highest
VI wins the election. I really think that using this election
system will reduce or even completely eliminate the need for
strategic voting. I believe that if we used this election system,
the leaders elected would, on average, be a better representa-
tion of the peoples’ choice.

This is (finally) the last part of this article, unless I come up
with something better.

((λ(* /)(* * /))(λ(+ -)(if - -(+ + #t)))#f)

mathNEWS 148.3 February 18, 20224

THE PRESENT
He burst through the door in a flurry of desperation and
rainwater.

“Do you still have it?”

The shopkeeper was startled, but knew what he meant. She
reached into the glass case and extracted a watch, dark, the
dial heavy and smooth. He knew his brother would like it; he
would’ve wanted the same for himself.

He paid the sum in cash.

Today was the last day. He hadn’t known last night that he’d
like to have a relationship with his brother still. But the
loneliness hit him hard when he woke up, and he found that
he wasn’t angry anymore. Not so long after that he could
barely remember what had caused their separation at all.

The beach was empty when he got there. A wall of panic closed
in on him. But the ship was not due for another hour — he
couldn't have left. The wet sand clung to his boots as he
clambered up a rock, to gaze out at the coastline.

“What are you looking for?”

It was a girl, barely. He nearly slipped at the sound of her
voice. She seemed just out of childhood, thin, with the
shiftiness of a person who had known hunger.

He shook his head and turned away, but turned back a
moment later.

“Did you see a small blue-and-red boat in the last hour or so?”

“Depends.”

“On what?” He didn’t have time for her games.

Her eyes fell to his bag. He sighed, but rummaged around and
pulled out half a sandwich. She ripped into it with a relish that
was difficult to watch.

“Well?”

“I need cash. I’m not going to talk for food.” She spoke around
a mouthful of cucumber.

The anger rose like a tidal wave. She’d already finished eating.
He pulled out the remainder of his money from his purchase,
but kept hold of it.

“Talk.”

“At the harbour over west. They needed to refuel, or
something.” Her eyes didn’t move from the cash as she spoke.
She scampered away as soon as he handed it over, as though
she expected him to change his mind.

He walked slowly now, the apprehension of seeing his brother
again coming back now that the urgency was gone. The sky
had darkened to the colour of a day-old bruise by the time he
arrived.

He didn’t have to board the boat. There was his brother on the
pier, flush with the contentment of the newly married, his
wife rosy and beaming beside him.

Their happiness dissolved into a careful wariness at his
approach.

“I never thought it was your fault.”

He needed to say it. He realized now. He’d needed to say it a
long time ago, but hurt and confusion had kept him away.

His brother took a while to respond. “It seemed like you
blamed me for everything that went wrong.” He didn’t look
angry.

He nodded. He couldn’t argue with that. He was young and
foolish and needed a reason, and his brother had been the
convenient scapegoat. His brother’s words after the fact had
kept him from reconciling sooner, but he didn’t need the
apology now.

“I have something for you.”

He reached into his bag, searching for the weight of the watch.
It would be his apology, his request for resolution. But it was
gone. He searched once, twice. And then he realized: the
girl had not made off with just the money and the food. She
wouldn’t be hungry tomorrow, and probably not for a long
while.

He didn’t know whether to cry or laugh. He would not be
happy today. At least she would.

chkz

LATE NIGHT CAMPUS
Stay in SLC until midnight. The vibes are exquisite. People are
quiet and the sky is a luscious black. The moon is dazzling,
and you would never have known how much artificial light
there is. Also, I’m alone here. Please keep me company. The
all-seeing eye of St. Jerome gets closer each passing day. I fear
it knows my name.

SecretSquirrel

P.S. There will be lots of janitorial noise so headphones are advised.

mathNEWS 148.3February 18, 2022 5

I. ONIONS? OH, YOU MEAN TUPLES?
Tuples are a mysterious beast in C++. My use of the word
“beast” is deliberate here; it's a seriously monstrous structure,
and many people recommend against using it, citing it as an
example of how bloated the STL structures have become. I, for
one, disagree with this sentiment, and posit that std::tuple is
genius: a monument to creativity and innovation.

So, how does this stupid type work anyway? It works a
little differently than most other STL containers, because it
doesn't even count as a container in the standard. With actual
containers, you can access elements with operator[]. For
example, with std::vector:

std::vector<int> vec{1, 2, 3};
vec[0] = 99;
std::cout << vec[0] << std::endl; // prints 99

While construction of tuples is similar (as of C++20; before
this, template parameter deduction wasn't as nice so it
couldn't just implicitly deduce types from the constructor
arguments), accessing tuples is a little different:

std::tuple tpl{3, 3.14, 'a'};
std::get<0>(tpl) = 99;
std::cout << std::get<0>(tpl) << std::endl; // prints 99

Well, that's an interesting way of accessing elements. It's
probably indicative of something funny happening under the
hood. In any case, the idea here is that we can store objects of
different types in each of the slots — we just aren't allowed to
change our minds about those types at run-time. I'm hiding a
detail here, and it's that the type of the previous tuple isn't just
std::tuple, it's really std::tuple<int,float,char>, where
those template parameters are inferred by the compiler. But
anyway, why can't we just use operator[] with tuples? What
makes it so special?

Well, I mean, if you think about it, it's a hard problem, no?
How would you implement it? How would you implement
tuple? In particular, operator[] needs a return type, right? But
what would its return type be? Let's take this thought one step
further: how would we even store the data? With something like
std::vector it's easy: since everything is of the same type T,
we just store everything in an array of T. But what should we
do here? Maybe some sort of linked list,

Oh, I can feel it now. The templates are nigh. Let's look at a
possible implementation for std::tuple.

Now, we could do a more “traditional” linked list look, but
for reasons you might see later, if you're looking to have
encapsulation on your tuple class, such an approach would
be nightmarish to get right with friend functions. Trust
me. I tried it. It was nightmarish and I couldn't get it right.
So, to make our lives easier, let's make the big idea of this
inheritance. A sort of “linked list” of inheritance; an onion of
inheritance, if you will. Concretely, if we had something
like Tuple<int,float,char>, it would publicly inherit from

Tuple<float,char>, which would publicly inherit from
Tuple<char>, which would publicly inherit from Tuple<> (the
“empty” tuple), each of these classes containing the data for
that “node”. Encapsulation is made easy by just making the
data protected. In particular:

template<typename... Rest>
struct Tuple { // base/empty tuple
 Tuple(Rest... rest) {}
};

template<typename T, typename... Rest>
struct Tuple<T, Rest...> : public Tuple<Rest...> {
 public:
 Tuple(T data, Rest... rest) : Tuple<Rest...>(rest...),
data{data} {}
 protected:
 T data;
};

This is a good start! Indeed, we have enough to create our very
own tuple, and Tuple tpl{2, 3.14, 'a'} will produce a valid
Tuple<int,double,char> with the data in the right places.
It's still pretty useless to us though; we need a way to actually
access and modify that data, i.e., we need to implement get.

Things brings us back to the problem we ran into before: what
should the return type of get<N>(tpl) be? The problem was
that we needed a mechanism to determine the return type
for any particular size_t N and Tuple tpl. Well… structs
can do everything: Let's write a struct to figure it out for us
at compile-time, say TupleTypeFinder. Our tuples are based
on the notion of an “onion” of tuple types, and to figure
out the type, we'll “peel back” the inheritance-layers of that
onion N times, and say that, whichever tuple template type
we end up with, its first parameter is the type we want to
return. For example, we'd have get<1>(tpl) make TupleTyp
eFinder<int,double,char> “peel back” the first layer of tpl's
type, Tuple<int,double,char>, to get Tuple<double,char>,
and then we'd want the return type to be double, the first
parameter. Let's get concrete:

template<size_t N, typename T, typename... Rest>
struct TupleTypeFinder; // unspecialized declaration

template<typename T, typename... Rest>

struct TupleTypeFinder<0,Tuple<T,Rest...>> {
 using type = T;
}; // base case -- we've found what we wanted

template<size_t N, typename T, typename... Rest>
struct TupleTypeFinder<N,Tuple<T,Rest>> {
 using type =

mathNEWS 148.3 February 18, 20226

 typename TupleTypeFinder<N-1,Tuple<Rest...>>::type;
}; // recursive case -- peel back another layer

Basically, we're just getting this struct to peel back N layers to
find the intended return type, and store it as a member type.
With that hurdle out of the way, we're ready to write get, in
which we'll do a similar “peeling” process to fetch the data, but
use this TupleTypeFinder to deduce its type. Certainly, that
ought to have been the biggest hurdle.

Right?

Bet.

template<size_t N, typename T, typename... Rest>
typename TupleTypeFinder<N,Tuple<T,Rest...>>::type&
get(Tuple<T,Rest...>& tpl) {
 return get<N-1,Tuple<Rest...>>(/* ??? */);
}

template<typename T, typename... Rest>
T& get<0>(Tuple<T,Rest...>& tpl) { return tpl.data; }

Yeah, an entire one of those lines is a return type. I know.
Fuck off. Anyway, what should go in that /* ??? */? What do
we want to pass as the argument? Well, we'd like to pass the
“rest” of the tuple. How do we get the “rest” of the tuple from
tpl?

Ah-ha. See, C++ lets us do something cute here. Remember
that if our tpl is a Tuple<T,Rest...>, then it inherits from
Tuple<Rest...>, which has its own data member. You should
also remember from a certain second-year CS course that
you can have a base-class reference to a derived-class, and
accessing it through that reference will treat the object like
one of the base-class. So, let's do just that:

template<size_t N, typename T, typename... Rest>
typename TupleTypeFinder<N,Tuple<T,Rest...>>::type&
get(Tuple<T,Rest...>& tpl) {
 Tuple<Rest...>& restTpl = tpl;

 return get<N-1>(restTpl);
}

Note that we can leave out the Tuple<T,Rest...> parameter
since the compiler will deduce it automatically. Lovely.

Now, let's compile it… and… it doesn't compile. God. Okay,
the first problem is that get doesn't have access to tpl.data;
it's protected, after all. No matter, we'll thrust a little spear
through our encapsulation to let it access it. Back in the Tuple
declaration, we add get as a template friend function:

template<typename T, typename... Rest> struct Tuple<T,
Rest...> : public Tuple<Rest...> {
 /* ...the rest of the implementation... */
 template<typename R, typename... Rs>
 friend R& get<0>(Tuple<R,Rs...> &tpl;
};

Great, but still no dice. What's the problem, then? Huh? Tell
me! Out with it, you god-damned lunatic, it's already been
however-many pages!

The problem is subtle, but significant. As it turns out, the C++
standard does not allow partial function template specializ-
ation like we're doing for the N == 0 case. In general. Ever.
Now, back in ye olden days, I'd bring you on a side quest
about something called SFINAE, and I'd show you how to
implement this structure called std::enable_if, which
only defined a member type in the case that some specified
condition held true at compile time. But C++20 gives us these
special things called requires clauses, which will do the same
thing in a less verbose way. Let's toss a few of those in:

template<size_t N, typename T, typename... Rest
requires (N != 0)
typename TupleTypeFinder<N,Tuple<T,Rest...>>::type&
get(Tuple<T,Rest...>& tpl) {
 return get<N-1,Tuple<Rest...>>(/* ??? */);
}

template<size_t N, typename T, typename... Rest>
requires (N == 0)
T& get(Tuple<T,Rest...>& tpl) { return tpl.data; }

…and? It compiles? It compiles. It compiles. Oh, yes. A
Tuple<std::string,char,uint32_t> for you; and yes, Tuple<T
uple<size_t,char>,char> for you. For everyone. What's that?
You've alerted the C++ Police to my presence, you say? They're
armed, you say? Ah. Hm. Interesting development.

jeff

DID EPSTEIN KILL
HIMSELF?
So, I hope everyone remembers when Jeffrey Epstein was
found dead. I also hope everyone remembers all the memes
and other viral bits that was everywhere shortly after that
news dropped. The cause of most of those memes can be
attributed to the uncertainty and circumstance surrounding
his death, as there was obviously going to end up being
speculation over exactly what happened. One of my favourite
parts of that time was when you would see a well-written
paragraph that is about some topic completely unrelated
to Jeffrey Epstein, but then out of nowhere, it baits you
into reading a phrase that said Jeffrey Epstein didn't kill
himself. However, don't let that distract you into forgetting
that Thomas Bach, President of the International Olympic
Committee, became the Olympic champion in fencing in 1976.

boldblazer

mathNEWS 148.3February 18, 2022 7

AWESOME POINTS II
CONTINUED FROM LAST ISSUE'S AWESOME POINTS

#announcements

wombo combo (VP Public Relations) 7:05 PM
Hello! Gaming Club is proud to present Awesome Points (AP),
a new way of rewarding club members who participate and
help others out through. A big thank you to @Arthur (VP
Gaming) for developing the AP system, and @Josephine (VP
Finance) for getting funding for this project from ManaCorp!
To get started, type ap help in the chat. We hope you enjoy
Awesome Points! 🎉🎉🎉
[32 🎉] [27 🥳] [5 😳]

 ❦

#general

Elizabeth Marcus Antonio 7:15 PM
ap help

Awesome Bot by ManaCorp [BOT ✔] 7:15 PM
Hi @Elizabeth Marcus Antonio! Awesome Points are a way
of rewarding Gaming Club members for participating in the
Gaming Club online chat. Please use the following commands
to interact with the Awesome Points system.

- ap help brings up this help menu
- ap tip <username> lets you reward a fellow club member
who has helped you out
- ap status lets you know how many Awesome Points you
have
- ap redeem lets you redeem Awesome Points for awesome
rewards!

You also gain Awesome Points for actions like chatting and
reacting to messages. Keep up the awesome!
[3 😳]

Elizabeth Marcus Antonio 7:16 PM
ap status

Awesome Bot by ManaCorp [BOT ✔] 7:16 PM
Hi @Elizabeth Marcus Antonio! You currently have 2
Awesome Points, and can tip other members up to 10 times
this hour.

Elizabeth Marcus Antonio 7:16 PM
this is sick
ap redeem

Awesome Bot by ManaCorp [BOT ✔] 7:17 PM
Hi @Elizabeth Marcus Antonio! You currently have 4
Awesome Points. To redeem points for one of the following
prizes, use ap redeem <prize number>

1: $5 MathSoc CnD Gift Card (5000 points)
2: Gaming Club EXCLUSIVE T-Shirt (25000 points)
3: One Month Gaming Club GamerPro Membership (10000

Points)
4: Secret Awesome Prize (9999999 Points)

More prizes are coming soon!

Elizabeth Marcus Antonio 7:18 PM
someone tip me pls 👉👈
i'll tip you back
[1 👍]

xXd3str0yerXx 7:22 PM
ap tip @Elizabeth Marcus Antonio
[1 🙏]

Awesome Bot by ManaCorp [BOT ✔] 7:22PM
@Elizabeth Marcus Antonio has been tipped 50 Awesome
Points! Keep up the Awesome!

Elizabeth Marcus Antonio 7:22 PM
thanks :D
ap tip @xXd3str0yerXx
[1 🙏]

Awesome Bot by ManaCorp [BOT ✔] 7:22 PM
@xXd3str0yerXx has been tipped 50 Awesome Points! Keep
up the Awesome!

Arthur (VP Gaming) 7:24 PM
Hey folks, glad you're enjoying the new Awesome Points
system! Please try not to spam tips for no reason though, we
want to reward real helpfulness and stuff like that
[3 👍] [1 🙏]

Elizabeth Marcus Antonio 7:25 PM
sorry
off topic hey does anyone want to party with me for the
carnage raid tonight

it would really help me and i could use some tips :)
[4 👍]

 ❦

AP Launch — T + 5 Days

“You always get the garden salad bowl, Name…” Blas groaned
across the SLC table. “How do you manage to stomach that
stuff? Every. Single. Day. A huge bowl of salad?”

“I like salad, and it's good for you. Do you want to try some of
mine?” Name twirled a cucumber on her fork.

“No way! I'll stick to my yummy double cheeseburger, thank
you very much. Everyone says I need to eat more so I can grow
taller, anyways. Okay, okay, okay, this is random, but did you
hear about Awesome Points?”

mathNEWS 148.3 February 18, 20228

“I know you love Awesome Points, Blas, but we already voted
not to fund the program at the last — “

“Gaming Club launched Awesome Points a couple of days ago!
It's a huge hit in their online chat!”

Name put her fork down, and her brow furrowed as she
pondered the new information. “How did they launch it
without funding? Are the points just for fun, then?”

“Nope!” Blas’ eyes gleamed with excitement. Their VP Finance,
Josephine, apparently made some agreement with ManaCorp
to get funding for Awesome Points.”

“I… don't think they're allowed to do that without telling us.
I need to look into this, Blas. Thanks for letting me know.”
Name's voice had turned serious and sharp.

“Awwww, Name… can't we just let Gaming Club have their
fun? They've probably worked pretty hard to get this working.”

“Rules are rules, Blas. And if Gaming Club is in violation of
them, I'll bring them in line.” Name's next bite of salad was
ferocious. Blas had once heard that Name had gained the
nickname ‘Hawk’ from somewhere, and he'd never thought it
appropriate until just this moment.

 ❦

AP Launch — T + 6 Days

“It's a huge success!” Josephine declared at the Gaming Club
execs’ weekly meeting, held around a virtual table on their
Minecraft server. “I'll let Arthur tell you all about the details.”

Arthur's Minecraft avatar stepped to the front of the room.
“Since starting the Awesome Points program, you may have
noticed our online chat has soared in popularity.

mathNEWS and Imprint have both run articles on us. Not just
one article, but several! Allow me to read you some of the
titles. ‘N Ways To Earn Awesome Points Fast,’ ‘SQL Injection
bug found in Gaming Club Chatbot,’ (don't worry, we've
patched that one), ‘A Waste of Perfectly Good Currency:
The Horrifically Flawed Concept of Awesome Points and
Engagement.’ If you're making enemies, then you're doing
something right, right?

Over the past two weeks, one hundred and fifty six users have
earned a combined total of over one hundred thousand AP,
and club engagement metrics have been higher than ever!
I'd like to thank everyone once again for your great work on
Awesome Points, and our sponsor ManaCorp for funding the
program — speaking of which, we've sent them our resume
banks and they've deposited the funds in Gaming Club's
ManaPay private account.”

The Minecraft avatars in the room punched the air; a
simulacrum of applause. Josephine continued, “thank you,

Arthur! Next up, we'll have President lightSoul with updates to
his long term strategic plan.”

 ❦

“Whatcha doin’, Sarah?” Wordress peered through the
half-open door through which Sarah was typing frantically.

“Yaaa!”

“Chat, meet ma roommate, Wordy!! She fantastica. Ya, take a
look, Wordy. Today, ya girl speedrunnin’ Aww Some Points
one-thousand-point percent! It sa new chatroom speedrun
category tha just started with Gaming Club Aww Some Points.”
Sarah's fingers flew over the keyboard, and Wordress saw none
other than Gaming Club's online chat rooms whizzing by.
“Tha goal a’ this run is ta earn one thousand Awesome Points
as quick a’ ya can! World record sa twenty mins, but I think we
can do betta!”

Wordress peered over Sarah's shoulder at the curved monitor.
Gaming Club's online chat was on fire. Dozens of messages
poured in every second, accentuated by ding sounds whenever
Awesome-Bot awarded points. Sarah started her own.

#l33t-gamer-code

ya girl sarah two 3:39 PM
ya! can anyone help ya girl with a code problem?

xXd3str0yerXx 3:39 PM
sure thing what's up?

ya girl sarah two 3:39 PM
ya girl got two binary search tree she gotta merge….

xXd3str0yerXx proceeded to write a quick explanation
which Sarah didn't even read before thanking and tipping
xXd3str0yerXx some Awesome Points. xXd3str0yerXx tipped
Sarah back, and Sarah let out a whoop. Wordress watched as
Sarah repeated the dance with a dozen other people, and a
dozen other questions, accumulating hundreds of Awesome
Points.

“Now tha ya girl has five hundred Awesome Points, we can
start grindin’ tha Awesome Points quests for tha last half of
tha run! SunlessGuy, thanks for ya donation! Keeps this girl
fed, an’ four months, wow!”

Wordress left Sarah's room, shaking her head and smiling as
she returned to penning her short story at the kitchen table.

 ❦

Name didn't often frequent the Gaming Club's office, and she
was surprised to see how the office had transformed. Last time,
posters of the hit video game Carnage of Glory, which Sarah
loved so much, had lined the walls, with figurines of various
heroes from the game stacked on top of large, RGB-drizzled

mathNEWS 148.3February 18, 2022 9

gaming desktops. As she turned into the office today, the office
was a frenzy of activity.

Gaming Club's office was very large, much to the chagrin of
Name, who preferred academic clubs. It was a long, rectangular
room with two rows of monitors facing each wall, and a large
desk at the back, where the president of the club was seated.
The back wall of the club was a floor-to-ceiling window, and
Name had never quite figured out the location of the window
from the outside of MC.

The president, who only went by “lightSoul” and always sent
delegates to MathSoc budget meetings, was dressed in a long
black cloak, bowler hat, and black mask, leaving only a sliver
of pale skin and green eyes visible. Name walked straight up
to lightSoul's desk, drawing glances from other club members
sitting at either wall.

“Hello… lightSoul. I'm here to talk to you about Gaming
Club's violation of several of MathSoc's policies. You've
received an email from me regarding my concerns, and I'm
here to talk to you in person about them.”

lightSoul didn't speak. He swept one cloaked arm towards
Josephine, who was sitting at a nearby workstation against the
left wall. Josephine walked over and offered a chair.

“Hi, Councillor Person,” Josephine said warmly. Name hated
it when people used her last name. “Thank you for coming. As
Gaming Club's VP Finance, I hope I can assuage any concerns
you might have about the Awesome Points program.”

Name smiled a cold smile. “I was, too.”

CC

WHAT YOUR MATHSOC VPA
IS DOING: PART 3
Hello! My name is Vincent, and this term I am your MathSoc
Vice President, Academic.

I plan to update students in mathNEWS every issue about what
I've been doing at MathSoc to improve the undergraduate
experience in the Faculty.

So here's the highlights since last issue.

ProctorU

I've had even more discussions with Faculty about the use of
ProctorU in the online sections of STAT 230 and STAT 231 this
term. If you are in either of these courses and experiences
issues with your midterm, please send me an email at vpa@
mathsoc.uwaterloo.ca. The more details the better.

Dean Meeting 2

The MathSoc executives met with the Dean and the Associate
Dean, Undergraduate Studies to talk about M4 and expanding
the amount of student space in the Faculty.

Going Forward

I'll be reaching out to Faculty on the topics of PD and work
term reports in the coming weeks.

Vincent Macri
Winter 2022 MathSoc Vice President, Academic

GET A CO-OP JOB
CHALLENGE
I have a challenge for you… get yo ass a motherfuckin co-op
job challenge. Pick up your phone dial…………………………
…………………………………………………….

Hi Google, yes, are you hiring today? Oh great, I will be down
there and fill an application, thank you. Amazon hi, how
are you? Are you hiring today? Oh great, I will be down in a
momentarily to fill an application. Thank you. Hi Wish, are
you hiring? Oh you are, full-stack developer! Oh great! I will
be down today to fill out an application, thank you. Apple, how
are you? Yes, are you guys hiring today? Oh fantastic. Can I
come down today to fill an application? Oh thank you.

Challenge. Get a fucking co-op job, do that challenge.

Deriving for Dick

Have an eye for graphic
design, a penchant
for dry wit, and a self-
deprecating sense of
humour?

A mathNEWS Editorship
is the ideal way to waste
that talent! Apply today!

A N OV ER LY-JA D E D
mathN E WS E D I TO R

mathNEWS 148.3 February 18, 202210

mailto:vpa@mathsoc.uwaterloo.ca
mailto:vpa@mathsoc.uwaterloo.ca

I MADE FUN OF SOMEONE FOR USING I3 AND THEN
BECAME AN I3 EVANGELIST
Uh-huh, yeah, you heard it right. Laugh it up. Guy Makes
Fun Of Thing And Then Turns Out To Actually Like The
Aforementioned Thing. Story of the ages. Go away.

For context, the laptop I'm using has a screen spanning
roughly 14 inches, 1080p, and I'm coming from running
Openbox as a window manager with no desktop environment.

A few days ago, I saw a friend using i3 on their machine and
made some light fun of them (maybe they didn't appreciate it,
who knows), because i3 is a sweaty window manager lacking
basic functionality from the first generation of Windows
and with an over-reliance on memorizing stupid keyboard
shortcuts. Why wouldn't you want windows to float? Floating
windows let you use the same screen space however many
times you want! Tiling is so much less efficient. Yes. To prove
this, I would install i3 on my own computer, use it for a day,
and finally point and laugh at how horrible an experience it
was. I wouldn't get anything done, surely.

How wrong I was.

After installing, things mostly worked out of the box. I moved
my autostart applications into the i3 config, which had pretty
obvious formatting. My friend also briefly described the
shortcuts to me: for most keys N, it's Mod+N to do a “normal”
thing, and Mod+Shift+N to do a “serious” task. Sometimes
they parallel each other; for example, Mod+{J,K,L,;} will
shift focus left/down/up/right, whereas Mod+Shift+{J,K,L,;}
will shift the window itself left/down/up/right. Mod+N will
switch to workspace N for any digit N, whereas Mod+Shift+N
will switch the currently-focused window to workspace N.
This is the first window manager in which I've actually used
workspaces, because it's so easy to use them and because their
use is so encouraged. It just feels so much more natural to
spread windows across workspaces than to always rummage
through heaps of layered windows, half of which I'm not
even actively using. Not using a window? Don't minimize;
just throw it into a scratch workspace and take it back out if
you need it later on. Want to launch an application? Don't
rummage around on a desktop for it; just Mod+D and type
what you want. The keyboard shortcuts are very minimal
but powerful, and easy to remember. While I've historically
dunked on people for this sort of shortcut evangelism, I've
come to respect and appreciate it, because it really feels like
the translation time between Wanting To Do Something and
Actually Doing It is becomes almost nil with this way of doing
things. It's very liberating, and it makes the overall experience
much less awkward and suffocating.

Altogether, I feel is that i3 is much less claustrophobic than
Openbox. This is partly because I'm on a laptop with one
small-ish screen, and so, with Openbox, I spent a lot of my
time alt-tabbing between a million windows, trying to figure
out which window is which in the panel, quickly amassing
many long rectangular buttons with similar appearances.

With everything so small and imprecise, basic things like
moving windows around and resizing them felt clumsy and
clunky. I don't think Openbox supports window snapping
either, so things got disorganized very quickly. I'd describe
this as frustrating, I felt incapacitated, like there was a really
long translation time between Wanting To Do Something and
Actually Doing It. All of these are things that i3 goes the other
direction in, and it works really well.

So, to my friend that I laughed at for using i3: I am sorry, and
you were so right. It really is the better option.

jeff

Note: the irony is not lost on me that I'm writing this for 148.3 of
mathNEWS.

SIGH...
There is one thing that the University of Waterloo is doing
really well these days, which is being an expert in making me
hate this university. Is it really the best idea to go full-steam
ahead on a “return to normal” when the world is nowhere near
normal? I could already tell that there would not be a normal
“return to normal” ever since that decision was announced
back in the Fall term. Uncertain times are not when you do
stuff like that. A lot of uncertainty means you get stuff like the
Omicron variant coming out of nowhere, screwing up those
plans. The plan should have been to continue doing what
was done for the Fall term. The university had bad enough
problems as is before the pandemic even started, can one
really expect things to ever go well for the university while
the pandemic is still ongoing? You would think that with a
background in public health, that Vivek Goel would know
better than to try a “full steam ahead”.

Is it possible to bring the old guy back as university president?
So far, the only thing the current one is known for is basically
mismanagement and errors in judgement on this entire
situation. It appears to me that at least Feridun probably had
a non-negative approval rating based on how people were
willing to meme him (or at the very least, his name).

boldblazer

Send help I'm out of spa
A mathN E WS E D I TO R W H O WO U L D

REA L LY L I K E TO H AV E A B I G G ER RO O M

mathNEWS 148.3February 18, 2022 11

II. TUPLES? OH, YOU MEAN LAMBDAS?
Psst. Hey, it's me. Listen, they know I got out; I don't have
much time before they bring me back to C++ Jail. Before then,
let me tell you another tale…

You remember tuples, right? Of course you do. Wait, you
don't? Fine, here's a refresher:

#include <tuple>

auto tpl = std::make_tuple(2,std::string{"Hello"});
// this returns a std::tuple<int,std::string>

int two = std::get<0>(tpl); // access elem 0
std::string hello = std::get<1>(tpl); // access elem 1

I vaguely recall a discussion of how this std::tuple structure
might be implemented in the STL, but I can't be sure… it's
pretty funny, regardless. But that doesn't matter right now. I
mean, really, why spend all that time talking about tuples when
we can talk about lambdas instead?

Introduced in C++11, lambdas allow you to define a sort of
anonymous function object, or a closure, that can be passed
around like an object, and invoked like a function. It can
capture variables from its surrounding scope, and it can define
its own, and take parameters. For example:

int main() {
 int x = 3;
 int y = 9;
 auto fun = [&x,y](int z) mutable -> int {
 x = 99;
 return z + x + y;
 };
 std::cout << fun(4) << std::endl; // prints 112
 std::cout << x << std::endl; // prints 99
}

Here, fun is a lambda that captures x by reference and y
by copy from the surrounding scope, and takes an integer
parameter z by value. It returns an int, as indicated by the
-> int bit at the end. The mutable keyword indicates that it's
allowed to mutate the things it captures; otherwise, they're
treated as const. This is a pretty hefty example, but it contains
most of the important things you can do with lambdas. Note
that the auto out front is necessary, since the actual type of
a lambda expression is kind of funny, for reasons which are
similarly funny.

Back to tuples: you can see it, right? The parameter list. It's just a
tuple. Type and value, both in one place. What would the type
of our tuple be? Ah, it's not important. Let's say it's auto. If
you need it, just use decltype. Let's see…

#include <type_traits>

template<typename... Ts>
auto make_tuple(Ts... vals) {

 return [vals...]<int N>(
 std::integral_constant<int, N>) mutable ->
decltype(auto) {
 return get_impl<N>(vals...);
 };

Note that the <int N> is a way of making the lambda generic,
i.e., it's a template now. Furthermore, the decltype(auto)
return type is just to make perfect forwarding work. Perfect.
Now, what's happening with the parameter and return
statement? Well, let's think about this. When we create a tuple
with make_tuple, each piece of data is captured by the lambda
that's returned, in order. We're going to want to retrieve that
data later on using get, which we haven't implemented yet,
but which will use get_impl as an in-between. The idea is that
we'll be passing these arguments along perfectly to get_impl
on evaluation, along with this N, which we'll have from get.
This will be nice, because we won't have to somehow pattern
match and rummage through the lambda's captures later on
in another function; we can get the lambda to hand-deliver its
captures to get_impl, and also pass along the index N of which
element we want.

With this, the actual implementation for get_impl and get is
mostly straight-forward; we'll do the usual recursive strategy
and peel back layers until we have what we want, and then
return it.

template<int N, typename T, typename... Ts>
auto get_impl(T&& val, Ts&&... rest) {
 if constexpr (N == 0) {
 return val;
 } else {
 return get_impl<N-1>(rest...);
 }
}

template<int N, typename T>
auto get(T& tpl) requires requires {
 tpl(std::integral_constant<int,N>{}); } {
 return tpl(std::integral_constant<int,N>{});
}

Don't worry too much about the requires requires thing.
If you want to learn more, read into concepts and constraints
in C++20. In this case, it just verifies at compile-time that the
expression is actually valid before letting you try to return it.

Look at this for a long time. Understand it. Seriously. What the
fuck?

Good. We can use deploy our monster creation now.

auto tpl = make_tuple(2, 4.5, std::string{"jeferey"});
std::cout << get<0>(tpl) << std::endl; // 2
std::cout << get<1>(tpl) << std::endl; // 4.5
std::cout << get<2>(tpl) << std::endl; // jeferey
std::cout << get<3>(tpl) << std::endl; // COMPILE ERROR!

mathNEWS 148.3 February 18, 202212

Want to pass a tuple to a function? Fine. Here's an easy way:

auto getFirstElem(auto& tpl) requires requires {
 tpl(std::integral_constant<int,0>{}); {
 return get<1>(tpl);
}

That's it. Ignore the fact that this could potentially accept
some non-tuple objects. It's not airtight. It's a lambda-tuple,
what are you expecting here? Also, note that the syntax I used
just up there was kinda funny, eh? I used requires requires,
but this isn't even a template function! And moreover, I just
used auto& as a parameter to the function! Would auto&...
tpls have worked? Is this valid C++? Since when? Oh, I
wonder… Oh no. They're coming. I need to go. I have more to
say. You will see me again soon.

jeff

Disclaimer: this idea was lifted from @lefticus on Twitter. I saw this
and couldn't help but share; it's just too good.

WINGS
You ever think about what it would be like to live with wings?
It’d be so easy to get from place to place, you could go over top
of all the buildings and it would just be great.

When you look at Minecraft, traversal gets so much easier
when you gain elytra for precisely this reason. Being able to
move quickly and precisely through the air is a great asset, and
I feel like we as a society should therefore be working on some
sort of wings or jetpacks.

Besides, doesn’t everyone want to fly? Flight has been one of
humankind’s dreams ever since we first emerged as a species,
and while we have airplanes and helicopters and such now it
doesn’t compare to the dream of powered flight limited to just
you and your immediate vicinity, flying through the air and
feeling the wind against your skin.

Sure, it’d be cold up there in the thin air, with no buildings or
trees to block the wind. But bundling up would be worth it to
just be able to soar to your destination.

In summary, it’d be cool to have wings. I rest my case.

Predap

MATH PROGRAMS AS
WINTER OLYMPIC SPORTS
The Beijing 2022 Olympics are coming to an end. Here is
a comparison of all the Math Programs with the Winter
Olympic sports. No, I will not provide an explanation. If
you disagree with it, you are welcome to propose a new
comparison.

ActSci — Ski jumping

Applied Math — Doubles figure skating

C&O — Luge

CS — Speed skating

CS/BBA — Biathlon

Data Science — Short track speed skating

FARM — Snowboarding

First year — Ice hockey

Math/BBA — Nordic combined

Math Business — Alpine skiing

Math CPA  —  Freestyle skiing

Math Finance — Skeleton

Math Physics — Ice dancing

Math Studies — Men’s figure skating

Math Teaching — Women’s figure skating

Pure Math — Bobsled

Statistics — Cross-country skiing

Undeclared — Curling

psychAlum (Bing Dwen Dwen’s super fan)

THE SUPERIOR FIRST
WORDLE WORD
adieu

If you disagree, you're wrong. I would bid you farewell, but I
instead bid you adieu.

eternally puzzled

mathNEWS 148.3February 18, 2022 13

profQUOTES
CS 246: Brad Lushman

“	I'm literally going dumpster diving here, I've thrown it
away but I still want it. And who knows what happened in
the mean time!

“	I don't mind going on side tangents, but that's an entire
side vacation if you will.

“	You're going to be destroyed anyway! You don't need your
stuff anymore! I'm going to take it.

“	Give me your data. Give me your next. It's mine now, not
yours.

“	In order to commit that theft, we need to know that our
victim is about to be destroyed.

“	Your data? Mine now.

“	You're such high upstanding moral citizens that you don't
understand the intricacies of theft.

“	[Someone suggests killing it] No, not kill it. That's already
going to happen, we don't need to get our hands dirty
here.

“	How about doing me a solid, and taking my stuff with you
when you're about to be destroyed.

“	I'm gonna take your stuff, you're gonna take my old stuff,
I'm gonna live, you're gonna be destroyed, everything's
good! It's actually simple.

“	You might feel a little triggered. You might feel a little on
defence. You might be offended by the compiler.

“	While [this function] isn't wrong, it's wrong in the sense
that it's morally wrong.

“	The only answer to “why?” is because Stroustrup said so.

“	One of the abilities of C++ is to surprise you with errors
you never would've ever thought of.

PHIL 145: Vanessa Correia

“	We could easily be observing a well-made robotic duck.

“	Pi Day is in fact on March 14… hey, I got married on Pi
Day! Cool.

ECE 106: Simar Saini

“	This means that no matter how we determine the value
of V(r) and E(r), either by guessing, computer aided
simulations, or demonic invocations, the function V(r)
and E(r) is the guaranteed one we want.

CS 442: Gregor Richards

“	You cannot convince all of Haskell that addition and
subtraction are the same thing; you are only allowed to
shoot yourself in the foot.

“	As there are as many as a dozen Haskell programmers who
don't have Ph.D.s[citation needed], [it] is vastly more popular
than any other [pure functional] language.

“	If you have used Haskell, great. If you haven't used
Haskell, even better.

“	I assume no mask is powerful enough to muffle my voice.

“	I now own this course! It's mine forever now.

“	There are more similarities than differences between these
languages, because they are just Latin pronounced badly.

“	Imperative programming in Haskell is the way a
functional programming fascist would do imperative
programming.

“	I hate all programming languages.

“	The reason you get into programming languages is not
that you like them, but because you hate them and want to
destroy them.

“	I am impressed with my ability to stack overflow in
Haskell, that's actually really hard to do.

CS 246: Rob Hackman

“	If someone's dying, it's okay to beat them up and steal
their stuff. You just have to make sure not to leave any
traces… I suppose that's validly true in life as well, as long
as you don't get caught.

“	Perhaps we should beat up this dying object, steal its stuff,
and toss all our trash on it. […] So we make it clean up our
garbage for us.

PMATH 370: Stephen New

“	…If the function is understood [in this notation], then
you can leave the f off.

CS 341: Arne Storjohann

“	If you ever present a paper at a conference, never show the
code, everyone will fall asleep right away.

SDS 131R: Theresa Romkey

“	I love my job. I would do it for free. Don't tell my boss, I'm
well-paid.

mathNEWS 148.3 February 18, 202214

“	After watching [Fight Club], I just wanted to beat
somebody up. Didn't help with my pacifism.

“	I might be a feminist, I might be a pacifist, but I will hunt
you down if you steal my pen.

“	If it's on your bucket list to be a fascist leader, I'm gonna
teach you in this course how. (class laughs) No, no, it's nice
to have goals!

“	No… you don't want no stinking freedom!

THE PEOPLE I MET AT MY
ORIENTATION

•	 A nice fellow who let me have a water bottle
because I forgot to bring one.

•	 An orientation leader who later had a heart-to-
heart talk about the expectations she tried to fulfill.

•	 My residence next-door neighbour whose local
address was the only thing we shared in common.

•	 A student who didn't rearrange his schedule.
•	 My friend who threw me a birthday party the next

term.
•	 My friend who drinks more Diet Coke than

necessary.
•	 My friend who I had cried to after I lost my

virginity in a dingy situation.
•	 My friend who I thought was gay and is now the

straightest person I know.
•	 An engineer who watched me butcher “Gotta Go

My Own Way” at a Karaoke mic.
•	 A handful of students who I played Anomia for the

first time with.
•	 An orientation leader who followed me and my

friends as we went in circles around the math
buildings taking pictures of random doors.

•	 An orientation leader/my friend who inspired me
to volunteer at the MathSoc office, apply to be an
Orientation Leader, and audition for a musical.

•	 My friend who I sat next to for multiple classes and
help me pass my MATH 135 Assignments.

•	 A friend that I ran into just last week after not
seeing her for 2 years.

•	 An orientation leader who was the dealer when we
played Blackjack.

Deriving for Dick

N THINGS YOU COULD
MENTALLY BE INSTEAD OF
DEAD

•	 the orchestral hit in a 90s boy band song
•	 strawberry milk
•	 the cause of all entropy
•	 lying down in a tim hortons parking lot at 3:29 am
•	 someone living in Dryden, Ontario, on January 19,

2006
•	 That Moment™ in Infinity Train S3E5
•	 someone with the audacity to diss English

songwriter, singer, music producer and political
activist Declan McKenna

•	 that one moment listening to “Two Trucks” by
Lemon Demon and finding out what it was

•	 Irish stage/voice actor (and heartthrob) Shane
Quigley Murphy

•	 screaming
•	 the emoji ball gags Denial is searching up while sex

toy bingo happens
•	 unrelated anecdote but i remember when sex toy

bingo was happening at st. pauls university college
and i stole a balloon from the front desk and felt
bad about it and returned it

Skit

A MONGOOSE

 Cix

13 doesn't exist.
RO B H AC K M A N

mathNEWS 148.3February 18, 2022 15

III. LAMBDAS? OH, YOU MEAN FUNCTORS?
Shut up. The C++ Police are close. I can hear them. The editors
too. They're going to string me up in the plaza and kill me. But
first, I have one more secret I am to bestow unto you. Listen
carefully. Okay:

Remember lambdas? How do they work? Why? Who cares?
Me. I mean, those must've been pretty hard to implement, eh?
Pretty radical, being able to just have a function be an object
like that. I bet they went to some lengths to write that into
GCC.

Wrong. Wrong; wrong; wrong. You know how lambdas act like
objects, right? Well, I shouldn't say they act like objects — rather,
they are objects. Okay, then an object needs a type. We've been
glossing over this fact by just declaring our lambdas with auto
all the time, but that seems rather obstructionist, hm? Let's
take a look.

int main() {
 int x;
 auto fun = [=]() mutable -> void {
 ++x;
 std::cout << __func__ << ": " << x << std::endl;
 };
 fun(); fun(); fun();
}

Compile this code. What does it print?

operator(): 1
operator(): 2
operator(): 3

Oh, neat, the modified copy-capture of x gets preserved
across invocations of the lambda. Also, hey, I thought that
operator() was a member function given to classes to make
them act like… oh… oh no. Computer, enhance.

int main() {
 int x = 0;
 auto fun = [=]() mutable -> void {
 ++x;
 std::cout << __PRETTY_FUNCTION__ << std::endl;
 };
 fun(); fun(); fun();
}

Compile this code with GCC. Run it. Tell me what it prints.

main()::<lambda()> mutable: 1
main()::<lambda()> mutable: 2
main()::<lambda()> mutable: 3

Okay. So, you probably learned in a certain second-year CS
course that classes in C++ can be fitted with an operator()
method, which lets you “invoke” objects of the class as if they
were a function. In an effort to sound like mathematicians,
we call a class equipped with this method a functor. The nice

thing about these so-called functors is that they preserve state.
In particular, the data members of the class can be seen as
state indicators to the function, so that information can be
preserved across invocations. Here's a cute little example:

struct Functor {
 int x = 0;
 void operator()() {
 ++x;
 std::cout << __PRETTY_FUNCTION__ << std::endl;
 }
};

int main() {
 Functor fun;
 fun(); fun(); fun();
}

Here's what gets printed:

void Functor::operator()(): 1
void Functor::operator()(): 2
void Functor::operator()(): 3

Mmm. So you see how it is now, yes? This example was not so
cute, nor was it arbitrarily chosen. This looks strikingly similar
to what we had before. That's because, in fact, they're the same.

When you create a lambda, what actually happens behind the
scenes is that the compiler generates a unique functor class,
defining its operator() method by the body of the lambda. If
mutable is not declared in the lambda, then the operator()
method of the functor is declared const. All captures in the
lambda become member variables for the generated functor
class; those captured by copy are made direct members by
copy, and those captured by reference get reference members.
The functor generated by the compiler is called a closure type,
and we say that the result of a lambda expression is called a
closure.

Nothing new here after all, eh? It's all syntactic sugar. But at
the end of the day, isn't that all a programming language ever
is?

Now run; leave. They'll be prying the type_traits out of my
cold, dead hands in no time.

jeff

That’s him, officer! C++
Templates Guy!

A V I G I L A N T mathN E WS E D I TO R

mathNEWS 148.3 February 18, 202216

BREAKFAST SANDWICH
MELANCHOLY SANDWICH
This article is a parody of Instant Noodles Resentment Noodles, which
will be published in mathNEWS 149.2

I want to eat egg and cheese breakfast sandwich…

I don't like to think about eating breakfast sandwich outside,
like when jogging, at the egg fountain, possibly in Kitchener,
or maybe in freezing rain weather, using some sort of portable
toaster; instead, I want to eat my breakfast sandwich in a nice
comfy diner served to me by a charismatic waiter/waitress
when it's nice and early on a Saturday morning and the whole
day and the whole wide world is laid out in front of me like
those anime posters where the field of view is so wide that you
can see the clouds curve.

Unfortunately, MC has no diners, I am under strict orders to
Not Eat Inside, and it is 9-o-clock P.M. on a freezing Monday
night. The only egg and cheese breakfast sandwich is the
last one on the International News shelf and I am not even
hungry. But I can't imagine what else I can possibly do on
this Monday night and I've already spent like twenty minutes
standing in SLC trying to decide what I would possibly want
to eat at the International News cafeteria. So I'm gonna buy
the breakfast sandwich. It looks so sad and limp just sitting in
there by itself. But I pick it up anyways. At least it's warm…

Sigh… it's nine-thirty on Valentine's Day evening and I'm
eating an egg and cheese breakfast sandwich out in the cold.
The English muffin is soggy, and the cheese is really weird
since it's turning black on one of the edges. I can't really taste
the egg since the cheese is really strong and stinky. It's really
not great, but at least it's warm, and it doesn't feel too cold out
yet since I haven't been waiting outside for too long… it's so
stinky… and then like thirty people start walking out of MC,
talking loudly and interrupting my melancholy. How rude!
One of them even stares at me (I'm standing on top of a rock
for warmth) and I glare back. Normally the bracing cold and
hot food smash together and self-annihilate to explode all of
the melancholy but the cold is just not cold enough and the
breakfast sandwich is not hot enough and the silence is really
not silence enough and the surrealness is not disappearing…

I just wanna sit in a diner with some cutie and eat egg and
cheese breakfast sandwich burp

CC

BREAKFAST SANDWICH
MERRIMENT SANDWICH
This article's a parody of Instant Noodles Resentment Noodles, which'll
be published in mathNEWS 149.2!

I want to eat egg 🥚 and cheese 🧀 breakfast sandwich!!

I like to think about eating breakfast sandwich everywhere,
like at the egg 🥚 fountain, at the cheese 🧀 fountain, in
Waterloo, or anywhere!! It would be so awesome to eat my
breakfast sandwich in a nice cozy diner 😌 served to me by a
really nice and really happy person 🤗 when it's nice and early
on a Saturday morning and the whole day and the whole wide
world world 🌍 is laid out in front of me like those anime
posters where the field of view is so wide that you can see the
clouds 🌥 curve!!

MC doesn't have any diners 🍽 yet, but that's okay, since I'm
Not Allowed 🚫 to Eat Inside 🍔 anyways! Nine PM on a brisk
Monday night! I'm not really hungry, but I need to get my
protein for the day and International News has just the perfect
egg 🥚 and cheese 🧀 sandwich!! It's all by itself, so unique 🤩
and quirky ✨ , like it was meant for me!! I spend like twenty
minutes just fawning over 😍 it since it looks so cute there
in the tray~ I buy the breakfast sandwich! It looks so happy
😀 and cute just sitting in there by itself. I pick it up, and it's
piping hot! I decide to name it Eggy. 🥚

It's nine-thirty now on 💖 Valentine's Day 💖 evening and
I decide to go out into the fresh, brisk, cold to eat Eggy.
Eggy's English muffin is nice and soft, and the cheese is more
colourful than usual! I knew Eggy 🥚 was special! I can't really
taste the egg since the cheese is really strong and tasty 😋 . It's
great, and the warmth 😌 is so nice out in the cold 🥶 . Then
like thirty people start walking out of MC, talking loudly and
and cheerily 🥳 ! How great! I catch one of them glance at me
(I'm standing on top of a rock for fun) and I smile back 🙂 .
Normally the bracing cold 🧊 and hot food 🍜 are already
nice, but the cold is just extra perfect enough and Eggy is extra
unique enough and the cheerful chatter is so nice and I just
feel euphoric~ 🌃✨

This just makes me even more excited for the day I sit in a
cozy diner with a nice girl 🤗 and eat a really tasty egg 🥚 and
cheese 🧀 breakfast sandwich!! That would be fun~ 🙂

enamourED

What's my favourite menu item? I'd have to say it's the
sausage biscuits for breakfast.

P RO F. J E F F REY S H A L L I T

mathNEWS 148.3February 18, 2022 17

///
“A computable function is one that is effectively computable.”

Nowadays, with so-called models of computation ranging
from λ-calculi to μ-recursive functions to Turing machines
(these three have been proven to be equivalent), a definition
of what it means to be computable necessarily makes reference
back to one of them. However, these models were developed
over the course of the twentieth century, as part of the quest
to formalize the notion of computability. How was the term
“defined” before then?

Intuitively, “effectively computable” meant just that: it should
not take any human ingenuity in order to compute. The
function should be able to be carried out through a finite
sequence from a finite set of instructions. The instructions
must be “exact,” the definition of “exact” once again appealing
to intuition. Instructions, of course, should be finite. But we
aren’t really able to capture “effectiveness” rigorously without a
model. It’s tautological.

“A computable function is one a computer could compute.”

One of the first attempts at a model of computation was a
finite-state machine, or FSM. A machine consists of a set
of states, one of which designated the initial state, a set of
symbols called an alphabet, and a transition function that
takes in a state and a symbol and returns a new state, if
defined. If it isn’t defined, we “throw an error”, in whatever
sense is reasonable. We designate some of the states to be final
states: if the machine wants to stop it must be while it is in
one of these states. Note that the set of states and the set of
symbols are both finite and nonempty.

We can represent an FSM as a digraph, where vertices are
states and edges valid inputs to the transition function, labeled
by alphabet symbols. In the diagram stolen from Wikipedia
below, notice that the unlabeled arrow into it marks S1 as
the initial state, and the double circle around it marks S1 as a
final state. We can then intuit this program as one that only
succeeds in computing strings from a binary alphabet with an
even number of zeroes: can you see why?

“A computable function is one that is encodable through an FSM.”

Already we can probably see why this doesn’t achieve our
purpose satisfactorily. Consider here what the two states
represent: S1 means the string at this point has seen an even
number of zeroes, and S2 odd. Together, these are enough
to handle finite binary strings of arbitrary length. However,

consider now the canonical example: construct an FSM that,
from an alphabet of (and), only succeeds in computing
strings where parentheses are properly balanced.

A digraph representation would see a line of states S1 to Sn, S1
initial and final. A (would take a state to its successor, and a)
to its predecessor.) at S1 is an undefined transition: we throw
an error. And this would do the trick, given that the string
had at most n unclosed (s at a time. Unfortunately, we cannot
handle arbitrary strings for this problem. Finite states do not
permit that.

“There are more computable functions than those that are
encodable through FSMs.”

Alright. That’s enough dawdling. Turing machines. Same
start: finite nonempty set of states, finite nonempty alphabet.
Imagine now an infinite tape, each cell containing a symbol
from the alphabet. We sit in a cart on one of the cells, with a
given initial state. We have a state transition function: it will
take in our current state, as well as the symbol in the cell we’re
currently occupying, and return three things: a new state, a
new symbol, and a direction of left or right. We’ll change our
state, write the symbol onto the tape, then move. We may halt
at a state if the state is final, just like an FSM. We will throw
an error if the state transition function is undefined on that
pair of state and symbol, just like an FSM. We will compute
anything, unlike an FSM.

“A computable function is one that is encodable through a Turing
machine.”

The two concepts are similar, remarkably so. The critical
component lies in the fact that a Turing machine may have an
infinite tape. Call a Turing machine with a finite tape a finite
Turing machine, which I’ll abbreviate FTM. We can then ask:
what is the relation between FSMs and FTMs? Suppose the
FTM had tape length k, alphabet A, and set of states S. As any
Turing machine is completely characterized by its current
state, current tape, and current position on the tape, we can
formulate the set of all FTMs of tape length k as the product
of S, A^k, and {1, ..., k}. Let this product be the set of states
of an FSM: can you see why, then, all FSMs and FTMs are in
correspondence?

“A Turing-complete programming language is one that can
simulate any Turing machine.”

If you’ve coded in a language, it’s probably Turing-complete.
If you’ve written a language, it’s probably Turing-complete.
Near and dear to our hearts is our friend +-<>,.[]. We might
be familiar with other fun examples: consider CS145’s Gordon
Villy Cormack opcode (fondly abbreviated as “gvc”, “gvc-cpu”,
or “why is this on the final”), consisting of ten instructions
and notably the ability to write itself at runtime. (Sidenote:
months ago the author had planned for gvc to be the third
installment of this series. They promptly abandoned the idea
just minutes after launching DrRacket.)

mathNEWS 148.3 February 18, 202218

To be pedantic, we might want to say “approximately simulate”
instead. After all, physical limitations dictate that we can’t
make anything that’s not just an FTM. We’ve gotten k pretty
big though, Moore’s law and whatnot, so it’s good enough. We
know what we mean in spirit.

Recall, now:

“A legitimate programming language is one that can interpret
Brainfuck.”

Here, we need to be careful. While every Turing-complete
language is legitimate, is the converse true? It hinges on what
we mean by the word “interpret”.

To be pedantic, we might want to say “approximately
interpret” instead. After all, in what we have done, there is an
element of preprocessing necessary to get Brainfuck to run
in legitimate languages. With Desmos, we needed to change
the commands into their underlying ASCII encodings. With
LaTeX, the I/O wasn’t exactly I/O, in the sense that the entire
input “stream” was just another macro argument and the
output a PDF. This is consequently not interpretation in the

purest sense, but it’s good enough. We know what we mean in
spirit.

Take a look, for example, at vi’s substitute command. :s/
PATTERN/REPLACEMENT/FLAGS does exactly what one would
expect it to do: :s/a/b/gi will replace every (the global flag)
instance of a (or A, the case insensitive flag) in the current
line with a b. PATTERN could be a regex. Now, this command
by itself we could consider a full programming language,
albeit a very restrictive one. To the author’s knowledge,
it is not Turing-complete. (Sidenote: did you know sed is
Turing-complete?)

Nevertheless, there are possibilities. Assuming the text
file vi currently has open was one with a .c extension, and
assuming its contents were of the form int main(){char
t[10000];char*p=t;BRAINFUCK_STRING}, what could we do? If
we tried the series of substitutions of + to ++*p;, - to --*p;, >
to ++p;, < to --p;, [to while(*p){,] to }, , to putchar(*p);
and , to *p=getchar();, why — we would see that indeed,

Lemma 3.1. :s/// is a legitimate programming language.

ƕ

ꙮ
Unicode is big — the most recent version, Unicode 14.0, has
144,697 “characters” (ranging from boring ASCII to mathemat-
ical symbols to control characters which can affect how other
characters are displayed) — so it's unsurprising that it has
many unusual, obscure, or storied symbols. That said, from the
vast planes (no, I don't mean plains) of Unicode, I think “ꙮ”
(the “Multiocular O”) in particular warrants some discussion.

ꙮ is a variant of the Cyrillic character О (itself a distinct
Unicode character from the Latin O), and as described in
a short Wikipedia article1, appears in… at least one phrase
of one 15th-century copy of the Book of Psalms of the Old
Testament, with no other examples given. Furthermore, the
phrase it appears in translates to “many-eyed seraphim”; or, a
rough alternate translation including the character of note is
“multiꙮcular seraphim”. Doesn't this seem like a rather low bar
for inclusion in such an important and ubiquitous standard? It
amounts to little more than a doodle, after all.

Well, there's a little bit more context. While there's no other
evidence for the existence of ꙮ given in the 2007 proposal for
its addition into Unicode2, that proposal also included other
similar characters: the Monocular O (with a dot in the center),
the Binocular O (with two dots in the center), and the Double
Monocular O (two horizontally joined Monocular Os). Note
that all of these -ocular Os are used in eye-related words.
While each character individually may have had a weak case
for inclusion in Unicode3, their similar nature and appearance
in more than just one text must have indicated a more
concrete historical phenomenon of making eyes from Оs
that was, apparently, notable enough to be set in standardized

stone. (More generally, there's the question of what is the
“lowest bar” for inclusion in Unicode, which I'm sure is
controversial in some circles I'm not a part of.)

On a more philosophical note: some Slavic religious scholar
did write these characters, which I think may really be closer
to doodles than symbols of strong religious significance.
On some level, the writer achieved a strangely specific form
of immortality. The many standards developed today are
primarily constructed to make our lives more organized for
(ideally, but often not in reality) the long term. I guess it's
not hard to produce some long-lived information, because
a lot of online content is automatically archived in various
places. However, standards are not just built to last but built
to remain relevant. There's a lot of future ahead of us. Who
knows? A minor contribution to a project, or maybe a brief
article in a student-run publication, might similarly become
immortalized in its own small way.

cutlet

Author's note: thank you to the editors for ensuring the proper display
of ꙮ!

1.	 https://en.wikipedia.org/wiki/Multiocular_O
2.	 https://www.unicode.org/L2/L2007/07003r-n3194r-

cyrillic.pdf

3.	 As stated at http://www.unicode.org/pending/proposals.html:
“The Unicode Consortium is interested in obtaining information
on known glyphs, minor variants, […] however, they are generally
not acceptable for character proposals.”

mathNEWS 148.3February 18, 2022 19

https://en.wikipedia.org/wiki/Multiocular_O
https://www.unicode.org/L2/L2007/07003r-n3194r-cyrillic.pdf
https://www.unicode.org/L2/L2007/07003r-n3194r-cyrillic.pdf
http://www.unicode.org/pending/proposals.html

OPEN LETTER: WHAT'S IN A NAME?
See those right-justified monikers at the end of every article?
Ranging from the quotidian to the niche to the bizarre, these
marks serve as the face for each mathNEWS writer. Such a
name is not chosen lightly — and once chosen, its baggage is
not easily discarded.

Why does this esteemed publication have such a tradition?
Well, just think about it — do you think you'd see some of the
things you see in mathNEWS if someone had to attach their
legal name to it?

To the reader, we writers are an amorphous bunch. Long-time
readers pick up on things like interests, personalities, sure.
But mystique remains. Who are the people, the humans of flesh
and bone, behind the pages? This is all complicated by the
fact that, to use mathy terms, the mappings between people
and writer names and writer names to people are not necessarily
injective.

Perhaps on one or more occasions, you've scanned your
lecture hall, letting your eyes fall on the back of someone's
head, wondering, Are they Finchey? (Replace with the name(s)
of your choice.) A fanciful little exercise if you're seeking some
distraction, sure. Ultimately, it is fruitless at best and deadly
at worst. “True identities,” as it were, are closely guarded by
this paper's editors — they are bound by hallowed obligation.
Furthermore, I can only wonder what the end result of
intense perseverance in this matter could possibly be. To
hunt “identities” down like prey, only to gain the despicable,
gluttonous gratification of solving a trite “mystery”? It's hardly
something I can respect.

Beneath our chosen faces, we writers present a simulacrum
of the lives of undergraduate students in this Faculty. To the
average reader, I am Finchey. Nothing more and nothing less.
Perhaps it's best this way.

Finchey

HUNT FOR FINCHEY
A BLURB ON mathNEWS'S FINCHIEST WRITER

Since December, I’ve been tracking down the mathNEWS
writer known as Finchey. I don’t remember how it started. By
now, I don’t care.

I don’t know. I’ve downloaded every mathNEWS issue since
January 2019, and I’ve read nearly every Finchey article ever
written. There is no larger why, not anymore.

I know a lot of mathNEWS writers in person. I know that
one of them is Finchey, and I have my suspicions. But with
every new development comes a deep and unforgiving doubt.
Certainty regarding facts as basic as Finchey’s age and gender
has come and gone. I feel contradiction. I feel a hole in my
abdomen.

If I put this much energy into identifying a true stranger, I
would be of great concern to the Canadian government. But
Finchey is no true stranger. Finchey isn’t even true: they are a
collection of words. And as much as I like to pretend that art
can extend beyond the page, I know deep down that Finchey
is entirely limited to what their author wants to make known
about themselves. So am I going too far? No: Finchey is a self-
contained character, a projection of a three-dimensional body.
Knowing that limits are baked into the game only makes me
obsess more.

Finchey cannot be characterized by certainty. Finchey is a
knowing look between people behind the veil of the page.
There is a subtext, and Finchey is a projection of that subtext.
Just as Freud could only understand the relationship between
the conscious mind and its environment through conjec-
turing a third entity — the unconscious mind — I can make
out the vague dance of shadows, of people living lives and

forming relationships and making private references between
themselves. Finchey is not the object itself, but the by-product
of the object.

Why do I hunt for Finchey? I think it’s funny. It’s also
performative, at least partially. Other writers have caught onto
my search, and occasionally, I feed into the joke by reminding
them that I’m still searching. In return, they feed into the
joke by refusing to tell me who Finchey is (notably, Finchey’s
identity is an open secret). I am the object of my own joke: I
am obsessing over a fictional character, and I think that that’s
funny. What does it say about me, that I think performative
obsession is funny? What does it say about me, that I play
characters around my friends?

And now I’m writing an article about it, a mostly internal
mathNEWS matter, something of little relevance to those
outside of the writership. But I guess that that’s in the spirit
of mathNEWS: articles are often written about the mathNEWS
experience itself. It’s also in the spirit of Finchey, who demon-
strates great awareness of the body of work they’ve amassed.
“Meta” is a cliché. “Self-referential” captures it more precisely.
And I guess that once a project becomes large enough, self-
reference just becomes reference. The events of your life
inform your projects, but what happens when your life begins
to coincide with the project itself? mathNEWS is an exercise in
self-mythology. Finchey is the master of self-mythology.

I have read the text of Finchey. The text has lent itself to inter-
pretation. Interpretation has led to theory, and theory has led
to story. And now, it feels as if the stories I tell myself about
Finchey overpower the text itself. I find myself overlooking
details to maintain a more cohesive image of Finchey. A

mathNEWS 148.3 February 18, 202220

tree unplugs itself from the ground and hovers through the
cosmos. There are only Fincheys of the mind. I would make a
terrible English major.

I took a break while writing this article. It was not a sleep:
it was a seven-hour nap. I dreamt about Finchey, which is
strange considering that I cannot associate a definite face or
voice with them. But I dreamt that I knew who Finchey was,
and I experienced a relief beyond the capacity of the conscious
imagination, far exceeding the relief I’ll experience when I
actually learn who Finchey is. I am now awake. The hunt just
got harder.

χ

UNTITLED.BMP
Is it weird to be sad about someone who makes you happy
Is it strange to want to be the only one they think about
It sounds unhealthy, right
It can't possibly be good
It's confusing
It's wrong

And I am stuck feeling that way
And I don't know what to do about these feelings
Historically they gave gone away over time
Historically I have just had to sit it out
But this feels different
But it always feels different

I try to get them out of my head but
I can't push them away from my mind
There are too many other things I don't want to think about
There is no more space for things to ignore
They are unignorable
They are unforgettable

Often it helps to get it out of my mind
Often the written word is my release
Why isn't the burden lifting then?
Why do these words make me feel more?
This should not be happening
This is against all precedent

wall outlet

ABOUT SNOW
So, I was walking back home that night, under the snow. I
was breathing, sometimes inhaling, some flakes in my nose,
feeling like I’ve been trying some new drug. I almost slipped
on the ground, then I stopped walking. I watched the falling
snow. It was beautiful. It was unreal. The snowflakes would
gently get down from the air, arriving from everywhere, going
everywhere. The streetlights would illuminate them, making

them shine for a microsecond. I looked around. The ground
looked like pure glitter. Everything looked brighter, and pure.
The snow was covering everything. I could have walked on
the lake thinking it was a field. On my arms, I could see the
perfect snowflake shapes I used to cut out of paper as a kid. I
closed my eyes, enjoying the feeling of snow landing on my
eyelashes. I appreciated how soft the snow was this night. It
was not drizzling. It was not humid, nor cold, nor heavy. It
was magic from the skies. It was perfection.

Then I crossed the road. The snow, half melted, brownish on
the road, splashed under my shoe. The shortcut I used to take
was covered by the mountain of snow. A salt piece went under
my shoe, making the rest of my walk less comfortable. The
magic was gone. A snowflake landed on my cheek, melted,
making me look like I was crying. It felt appropriate. I looked
up again, hoping to see the beauty I knew was there. And I saw
it again. They were dancing around me, and everything was
dazzling again. I whispered a thank you.

PhilosophicalSoul

CALL OF DUTY
DEVELOPERS MOBILIZED
TO HIGH ALERT
SAN MATEO, CA — As tensions in Ukraine continue to rise,
and as US intelligence sources warn that a Russian invasion
is imminent, Sledgehammer Games president Aaron Halon
confirmed that his staff of more than 200 game developers had
been mobilized to high alert.

Halon addressed his assembled developers in the company
break room, next to the foosball table. “As the possibility of
conflict grows,” he began, “we stand ready to make a game that
isn't set in World War II for once.”

According to independent investigators, Sledgehammer
Games’ recent actions could only be preparation for one of the
largest game development efforts yet seen in modern history.
Satellite imagery shows the movement of large quantities of
pizza and Red Bull to Sledgehammer headquarters, which
the Pentagon believes to be a primary indicator that game
development is imminent.

President Biden is expected to meet with Halon next week, in
an attempt to negotiate a settlement that would permanently
end releases of Call of Duty games. However, most observers
believe Halon is committed to inciting lacklustre single-
player campaigns and repetitive multiplayer in the Western
world, pointing to previous examples of Halon's reckless and
belligerent behaviour, like Call of Duty: Vanguard, Call of Duty:
Modern Warfare, Call of Duty: Black Ops 4, Call of Duty: WWII,
and Call of Duty: Infinite Warfare.

UW Unprint

mathNEWS 148.3February 18, 2022 21

C++ LAMBDAS AREN'T CLOSURES, UNTIL THEY ARE
If you haven't already seen jeff’s three-part absolutely unhinged
series on implementing C++ tuples from scratch this issue,
I highly recommend you go back and read it. If you have,
in fact, managed to survive three thousand words of dense,
technical C++ so psychopathic it puts the machinations of the
ISO working group to shame, you may recall the following
sentence from part III. Lambdas? Oh, you mean functors?:

The functor generated by the compiler is called a closure type,
and we say that the result of a lambda expression is called a
closure.

Hmm, closures. C++ supports closures, you say? Closures like
Racket and Haskell? Closures that are first-class functions, that
in the (paraphrased) words of Gregor Richards, “capture the
environment they are defined in, and when moved, bring their
captured environment with them”?1

Well, yes, but also no. Welcome to the weird world of variable
capturing in C++ lambdas, where everything is and is not what
it seems.

C++ lambdas are first-class functions

Yes, you read that right — in C++, you can treat lambdas
exactly like you would any other value! You can return them:

auto is_empty_factory(const auto &container) {
 return [&]() -> bool { return container.empty(); };
}

You can pass them in as parameters:

auto check_cond(const auto &cond) {
 return cond();
}
check_cond(is_empty_factory(...)); // works!

And you can store them in containers, albeit with a bit more
hassle:2

#include <functional> // define std::function
#include <vector>

// Returns a vector of boolean functions that checks if the
// corresponding parameter was empty
template <typename ...T>
auto check_conds(T&& ...containers) {
 return std::vector<std::function<bool()>>{
 is_empty_factory(containers)...};
}

// Return vector of checks if my vectors are empty
auto check_vecs_empty() {
 auto my_vec = std::vector<int>{1, 2, 3};
 auto my_vec2 = std::vector<int>{};
 return check_conds(my_vec, my_vec2);
}

Notice, too, that the lambdas we’ve defined “capture” their
environments. Indeed, the prophets were right; C++ really is a
functional language.

C++ lambdas, however…

…do not automatically “bring their environment with them”.
And so, contrary to what jeff claims, they are not closures as
we might expect.

To see what that means, consider this factory function that
takes a name, and returns a lambda that says hello to that
name:

#include <iostream>

// Say hello to name
auto say_name_factory(auto name) {
 return [&]() {
 std::cout << "Hello, " << name << "!" << std::endl;
 };
}

int main() {
 auto hello_jeff = say_name_factory("jeff");
 hello_jeff();
}

As with our previous examples, the lambda returned from
say_name_factory “captures” its environment. Let's compile
this program and watch it say hello back:

$ gcc --std=c++20 hello.cpp
$./a.out
Hello, 8-⌧s⌧⌧!

Huh. That’s not jeff’s name, at least not in English. What
happened here?

As it turns out, C++ lambdas do not capture their environ-
ments completely. The lambda we return from say_name_
factory captures name by reference; however, name is located
in the stack of say_name_factory. Thus, when say_name_
factory returns and tears down its stack, it also tears down
the returned lambda’s reference to name, leaving a dangling
reference. Which is why hello_jeff speaks in alien.

So C++ lambdas are not closures. The prophets were wrong;
C++ is not a functional language.

Turning C++ lambdas into closures*

* with some caveats

At this point, some programmers would admit defeat and
move on with their lives. But we’re C++ programmers; we can’t
let the realities of working with a stack-based language stop us
now. Bjarne Stroustrup gave us extraordinary power when he

mathNEWS 148.3 February 18, 202222

invented C++, and by God are we going to take this power and
snort it until even the most ardent of Haskell devotees agree
that C++ is a functional language.

One obvious way to get a lambda to completely capture its
environment is to have it capture by copy. This means that any
variables we reference inside the lambda body are copied into
the lambda’s environment, thus preserving them:

// Say hello to name, but copy it into the lambda
auto say_name_factory_copy(auto name) {
 return [=]() {
 std::cout << "Hello, " << name << "!" << std::endl;
 };
}

int main() {
 auto hello_jeff = say_name_factory_copy("jeff");
 hello_jeff(); // Hello, jeff!
}

However, copies can be expensive (e.g. vectors) or even
impossible (think unique_ptr). Another option is to use move
semantics:

// Say hello to name, but move it into the lambda
template <typename T>
auto say_name_factory_move(T &&name) {
 return [capture(std::forward<T>(name))]() {
 std::cout << "Hello, " << *capture << "!" << std::endl;
 };
}

int main() {
 auto jeff_ptr = std::make_unique<const char *>("jeff");
 auto hello_jeff = say_name_factory_move(
 std::move(jeff_ptr));
 hello_jeff(); // Hello, jeff!
}

Here, name is moved into capture inside the environment
of the returned lambda. We use std::forward instead of
std::move because name is a universal reference, but otherwise
you can just treat this as a move.

Side note: This is exactly how move closures in Rust work. When you
declare a Rust closure to be move, the closure takes ownership of any
variables referenced inside its body. Of course, the fact that the borrow
and lifetime checkers exist means that the compiler is very explicit
about when you must use a move closure to avoid dangling references.
In other words, if the world used Rust instead of C++, I wouldn’t have
needed to write this article at all.

However, moving lambdas comes with a catch: we can’t
use std::function to abstract their behaviour, because
std::function takes a copy of the lambda3. If the captured
variable is uncopyable (e.g. unique_ptr), then the lambda will
also be uncopyable, and the compiler will give us a very nasty
and undecipherable warning as C++ compilers are wont to
do. This unfortunately means that our previous trick of using

std::function to store lambdas in a container ceases to work.
We’ve gained the ability to call C++ lambdas closures, but
in turn we’ve lost the ability to call C++ lambdas first-class
functions.

Thankfully, a solution to this problem comes courtesy of
Raymond Chen from The Old New Thing4,5 — we can simply use
shared pointers for all captured arguments, and the function
becomes copyable again:

// Say hello to name, but use a shared pointer
template <typename T>
auto say_name_factory_shared(T &&name) {
 // make a shared pointer to encapsulate name
 auto ptr = std::make_shared<T>(std::forward<T>(name));
 // capture copies ptr, thus extending its lifetime
 return [capture = ptr]() {
 std::cout << "Hello, " << **capture << "!"
 << std::endl;
 };
}

int main() {
 auto jeff_ptr = std::make_unique<const char *>("jeff");
 std::function<void()> hello_jeff =
 say_name_factory_shared(std::move(jeff_ptr));
 hello_jeff(); // Hello, jeff!
}

So there you have it. A way to turn any arbitrary C++ lambda
into a first-class function with closure properties. This is
C++ as jeff expected. This is C++ as the ISO working group
intended. This is real, raw, down-to-the-metal C++, warts
and pimples and all, Machiavellian as always, just as Bjarne
Stroustrup envisioned it would be. No ifs, no buts, no small
text or hidden terms and conditions. C++ is a functional
programming language, and that title is here to stay.

Performance implications are left as an exercise for the reader.

terrifiED

If you want to play with the example code given, here’s a Compiler
Explorer link: https://godbolt.org/z/cPhzx4WYT

1.	 I got this very eloquent answer out of Prof. Richards at the end of
CS 442. You should definitely take CS 442 if you have the chance.

2.	 The eagle-eyed may notice that check_conds doesn’t have perfect
forwarding. The fix is simple and is left as an exercise to the reader.

3.	 The reason that std::function has to take a copy of the lambda,
rather than being a simple zero-cost abstraction/wrapper type,
is well beyond the scope of this article. The gist, however, is that
C++’s type system isn’t powerful enough to properly represent
functions and their environments, so the ISO C++ working group
decided to force them to be copyable in std::function.

4.	 https://devblogs.microsoft.com/oldnewthing/?p=100635
5.	 I discovered Raymond’s post after running into this exact problem

in my CS 246E project — we had a lambda that was outliving its
environment. This article is not an advertisement for courses
designed by Brad Lushman, but it might as well be at this point.

mathNEWS 148.3February 18, 2022 23

https://godbolt.org/z/cPhzx4WYT
https://devblogs.microsoft.com/oldnewthing/?p=100635

DIRECTOR
ADVERTISEMENT
No cartoons this issue, but there's an opportunity open next
term (Spring 2022) for 1–2 directors for the MathSoc Cartoons
project!

Are you interested in:

•	 Leading a team of writers/artists to create useful
academic resources for math students?

•	 Developing valuable transferable skills?
•	 Being featured on the MathSoc website for your

contributions?

Then send your resume to cartoons@mathsoc.uwaterloo.ca
now! Deadline: Friday, March 4th, 11:59 PM EST.

MathSoc Cartoons

DIRECTORS' DOODLES #2:
FOURTH WALL BREAK
We're two cartoons in and already the characters have become
aware of the fact that they're just that — cartoon characters.
How do you deal with self-aware characters, and can someone
please hand us another roll of duct tape to keep that fourth
wall together?

More bonus content can be found on the MathSoc Discord
server and on the MathSoc Cartoons socials.

MathSoc Cartoons Directors

© 2022 Marcus Chan and Grace Feng, all rights reserved. Published
under licence by MathSoc. Do not reproduce.

ISSN 0705-0410
UW's Bastion of Erudite Thought Since 1973

mathNEWS is a normally fortnightly publication, funded by and responsible to the undergraduate math students of the University of Waterloo, as represented by the

Mathematics Society of the University of Waterloo, hereafter referred to as MathSoc. mathNEWS is editorially independent of MathSoc. Content is the responsibility of

the mathNEWS editors; however, any opinions expressed herein are those of the authors and not necessarily those of MathSoc or mathNEWS. Current and back issues of

mathNEWS are available electronically via the World Wide Web at https://mathnews.uwaterloo.ca. Send your correspondence to: mathNEWS, MC3030, University of

Waterloo, 200 University Ave. W., Waterloo, Ontario, Canada, N2L 3G1, or to userid mathnews@gmail.com on the Internet.

mathNEWS is overseen by the Board of Publications, an autonomous board of the Federation of Students, University of Waterloo, hereafter referred to as Feds. mathNEWS

is editorially independent of Feds and the Board of Publications. mathNEWS has never been requested to withhold Improper Content as defined under Feds Policy 71.

Except where otherwise noted, this work is licensed under the Creative Commons Attribution-Noncommercial-No Derivative Works 2.5 Canada License. To view a copy of

this licence, visit https://creativecommons.org/licenses/by-nc-nd/2.5/ca/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California

94305, USA. Terms may be renegotiated by contacting the mathNEWS Editorial Team.

mathNEWS 148.3 February 18, 202224

mailto:cartoons@mathsoc.uwaterloo.ca
https://mathnews.uwaterloo.ca
mailto:mathnews%40gmail.com?subject=
https://creativecommons.org/licenses/by-nc-nd/2.5/ca/

Drop your gridWORD solutions off at MC 3030? 👉🥺👈
A P ER P E T UA L LY B O RE D mathN E WS E D I TO R

Across
	 1.	Band aid?
	 4.	No longer due
	 8.	___ cheese
	12.	Agreements to keep quiet
	14.	Main artery
	15.	Livin' la ____ Loca
	16.	A measurement for land
	17.	*What a spaniards neighbour may call a

goose?
	19.	*What one might do to make an origami

goose?
	21.	__ ___ on, meaning tedious length (2,3)
	22.	To trust someone enough to share private

matters
	24.	Prefix with angle
	25.	_ ____ you so! (1,4)
	26.	As opposed to your first
	31.	Brother of Jacob
	33.	Expression of surprise or affirmation
	34.	A, in Morse code (3,4)
	39.	Ankle bones
	41.	A preface to a book or speech
	42.	__ __ them, said to one who must decide on a

party to follow (2,2)
	44.	What a chef does when adding ingredients to

soup (6,2)
	46.	Prohibited thing
	51.	It's as easy as ___!
	52.	What might happen if your work downsizes

(4,3)
	54.	Menacing look
	56.	*What an American goose's favourite candy

might be?
	57.	*What an English goose's favourite candy

might be?
	60.	Almost a circle
	62. 	"Dies ___", Latin hymn
	63.	Fancy tie
	64.	World's longest river
	65.	What an addition symbol might say?
	66.	Cat call
	67.	Similar to Inc.

Down
	 1.	Santa ___, Calif.
	 2.	1801 in Roman numerals
	 3.	Mimic
	 4.	What one did in a bathroom
	 5.	What a pirate might say
	 6.	"Suffice __ __ say..." (2,2)
	 7.	To make someone feel apprehensive
	 8.	As opposed to mornings
	 9.	Went out, as a fire
	10.	Commercials
	11.	Daisy ___
	13.	"I ___ __ issues here",

what one might say	
when oblivious to the
problem at hand (3,2)

	14.	The two furthest points
of orbit, pl.

	18.	Belt at a wedding
	20.	Akin to the NFL, but

European?
	23.	She, in Portuguese
	27.	Car
	28.	A small battery
	29.	Like the median, abr.
	30.	Serpentine letter
	32.	Feng ____, like

furniture arrangement
	34.	Like math, science,

arts, abr.
	35.	Gold, in Spanish
	36.	Commonly skipped on

sign up, abr.
	37.	Removed salt from

water
	38.	Single-celled creatures
	40.	What one might be

if they show a strong
display of artistic talent

	43.	A weekly snow on
Saturday nights

	45.	A loud cry of anguish
	47.	Suffix to Gator-

	48.	Subatomic particle
	49.	Axis __ ____, like an alliance during WW2

(2,4)
	50.	A dash __ ____, to add flavour (2,4)
	53.	Bow projectile
	54.	Elated
	55.	Latin, to be
	57.	Nintendo avatar
	58.	"Oh my!", Japanese expression
	59.	Prefix with friendly
	61.	A common lightbulb type

CALLING ALL GRIDWORD GAMERS
gridCOMMENT 148.3

Hello to all the gamers!! So there I was in MC, wandering
around waiting for class to start when I spot the last issue of
mathNEWS, but low and behold, I flip to the back and see
no gridWORD!!! I was what they might say, shaking in my
boots (crying profusely), and would not stand for such crimes
against humanity.

So now here we are! Call in the fire brigade cause new
gridWORD just dropped and it's what they call fire. I cooked
this one up special for you all, those who are craving some
gridWORD action, enjoy it to your hearts content :prayge:

On another note, is it just me, or does everyone not see any
geese on campus recently? I've seen a few, but none compared
to previous terms spent at UW. So given this, I want to ask
for this issues gridQUESTION, “Where did all the geese go?”.
This works well with this gridWORD's theme as well, which
is: GEESE!!!

Can't wait to see your solutions and answers! If you have one,
email it to mathnews@gmail.com by 6 pm on February 28th
with your name or moniker, and include your gridQUESTION
answer as well!

Wink wonk

mailto:mathnews@gmail.com

otherNEWS is made
technically possible
by club executives of
the Math Faculty.

I say "technically"
because if they had
sent us more news
this week, this box
wouldn't be here.

T H E mathN E WS E D I TO R W H O
P U T S T H E " N E WS " I N mathN E WS

MATHSOC SPRING 2022 ELECTIONS ARE NOW
OPEN!
Are you looking to get involved with MathSoc and
represent members of the society? Today’s your day,
because nominations for the MathSoc Spring 2022
General Elections are now open! Nominations close
on Saturday, February 26th at 11:59 PM ET so make
sure to get your nominations in ASAP! :)

Link for nominating yourself and endorsing others:
https://vote.wusa.ca/elections

Want to learn more about Council? Head over here:
https://mathsoc.uwaterloo.ca/council/

Got questions? Feel free to reach out to anyone on
the Elections Committee – we're on the MathSoc
Discord, accessible by the UW Discord Student
Hub, or you can email us at elections@mathsoc.
uwaterloo.ca.

MathSoc Elections Comittee
Winter 2022

SUN FEB 20 MON FEB 21 TUE FEB 22 WED FEB 23 THU FEB 24 FRI FEB 25 SAT FEB 26

Winter Olympics ends Family Day Employee Thank-You Day Requests for final exam
religious accommodations
due

Tell A Fairy Tale Day

SUN FEB 27 MON FEB 28 TUE MAR 1 WED MAR 2 THU MAR 3 FRI MAR 4 SAT MAR 5

Reading week ends Final examination relief
requests due

mathNEWS 148.4
Production Night

Application to Graduate
due

Mardi Gras (Fat Tuesday)

Cycle 2 interview period
begins

Ash Wednesday

National Salesperson Day

mathNEWS 148.4 released

lookAHEAD

https://vote.wusa.ca/elections
https://mathsoc.uwaterloo.ca/council/
mailto:elections%40mathsoc.uwaterloo.ca?subject=
mailto:elections%40mathsoc.uwaterloo.ca?subject=

